

Agenda

- 1. Context control design methods
- 2. Definition of problem
- 3. Known accurate solutions
- 4. My proposal method of simplification
- 5. Simplified formulas
- 6. Example of application
- Conclusion

1.1. Control design methods

	Control design method	
Model G_m (form, identification)	Formulas for control settings	Predicted quality indicators

1.3. Forms of models

Aidan O'Dwyer, Handbook of PI and PID controller tuning rules, Imperial College Press 2009

Table 1. Models used in the design of control systems

Model type	FOTD	SOTD	Other stable models	Non-model specific	Models with an integrator	Unstable	Total
Number of methods	649	291	103	169	339	182	1731

FOTD
$$G_m(s) = \frac{k}{T_m s + 1} e^{-sT_0}$$
 (or $G_m(s) = k \frac{T_z s + 1}{T_m s + 1} e^{-sT_0}$)
Strejc model $G_m(s) = \frac{k}{(Ts + 1)^n}$

1. Context

1.4. Identification of models

Wrocław University of Science and Technology

1. Context

1.4. Identification of models

2. What is a problem?

9

Analytical calculation of FOTD parameters

3. What we have?

3.1. Step response of the Strejc model

(the derivative function of step response)

3. What we have?

3.2. Parameters of step response

Inflection point:

$$t_{R} = (n-1)T$$

$$h_{R} = h(t_{R}) = k \left(1 - \frac{1}{e^{(n-1)}} \sum_{i=1}^{n} \frac{(n-1)^{i-1}}{(i-1)!}\right)$$

3. What we have?

12

3.2. Parameters of step response

Inflection point:

$$t_{R} = (n-1)T$$

$$h_{R} = h(t_{R}) = k \left(1 - \frac{1}{e^{(n-1)}} \sum_{i=1}^{n} \frac{(n-1)^{i-1}}{(i-1)!}\right)$$

3. What we have?

3.2. Parameters of step response

Inflection point: $t_{R} = (n-1)T$ $h_{R} = h(t_{R}) = k \left(1 - \frac{1}{e^{(n-1)}} \sum_{i=1}^{n} \frac{(n-1)^{i-1}}{(i-1)!}\right)$

 $T_{m} \text{ and } T_{0} \text{ parameters in the step response of the Strejc model}$ $T_{m} = \frac{k}{R} = k_{Tm} T \text{ , where: } k_{Tm} = \frac{(n-1)!e^{n-1}}{(n-1)^{n-1}}$ $T_{0} = t_{R} - \frac{h_{R}}{R} = k_{T0}T \text{ , where: } k_{T0} = \frac{(n-1)^{n} - (n-1)!e^{n-1} + (n-1)!S_{n-1}}{(n-1)^{n-1}}, \quad S_{n-1} = \sum_{i=1}^{n} \frac{(n-1)^{i-1}}{(i-1)!}$

4. My proposal

4.1. Simplification

4. My proposal

4.2. Simplification methods

1) Analytical formulas that simplify expressions

2) Optimization with simple functions

3) Classical interpolation of functions in the assumed range of n values

 $\begin{bmatrix}
F_0(n_0) & F_1(n_0) & \dots & F_n(n_0) \\
F_0(n_1) & F_1(n_1) & \dots & F_n(n_1) \\
\dots & \dots & \dots & \dots \\
F_0(n_k) & F_1(n_k) & \dots & F_k(n_k)
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
\dots \\
a_k
\end{bmatrix} = \begin{bmatrix}
f(n_0) \\
f(n_1) \\
\dots \\
f(n_k)
\end{bmatrix}$ $\mathbf{VA} = \mathbf{f} \longrightarrow \mathbf{A} = \mathbf{V}^{-1}\mathbf{f}$

 $(n_0, n_1, ..., n_k)$ – nodes of interpolation $\mathbf{B}(n) = [F_0(n), F_1(n), ..., F_k(n)]$ – base of functions $\mathbf{A} = [a_0, a_1, ..., a_n]^{\mathrm{T}}$ – vector of coefficients $a_0F_0(n_i) + a_1F_1(n_i) + ... + a_nF_n(n_i)$ – interpolating polynomial $f(n_i)$ – value from accurate formulas

4) Approximation in the assumed range of *n* values Levenberg-Marquardt algorytm (LMA) (Mathematica)

 (n_0, n_1, \dots, n_k) – nodes of interpolation

 $\mathbf{B}(n) = [F_0(n), F_1(n), \dots F_k(n)]$ - base of function

4.3. Formulas for calculating T_m and T_0 on the base T and n

Analytical conversion of the Strejc model to the first order with time delay (FOTD) model

Various variants of functions and nodes were examined.

The three sets of formulas were selected, hereafter referred to as:

- easy solutions obtained in the simplest way (substitution of analytical formulas)
- **use** solutions proposed for use in design methods
- **best** solutions with a wider range of application

5.1. Time constant $T_m = k_{Tm}T$

Symbol	Formula	Methods of simplify
1) k _{asim}	$k_{Tm} = \frac{(n-1)! e^{n-1}}{(n-1)^{n-1}}$	Accurate formula
2) k _a =1 easy	$k_{Tm} = \sqrt{2\pi(n-1)}$	Stirling formula $n! \approx \sqrt{2\pi n} \cdot n^n / e^n$
3) ok _a 1	$k_{Tm} = 1.01 \left(1 + \frac{e^{-n}}{\sqrt{2\pi}} \right) \cdot \sqrt{2\pi(n-1)}$	Optimization $k_a (k_{Tm} = k_a \cdot \sqrt{2\pi(n-1)})$
4) ok₃2	$k_{Tm} = 1.01 \left(1 + \frac{e^{-n}}{e} \right) \cdot \sqrt{2\pi(n-1)}$	Optimization $k_a (k_{Tm} = k_a \cdot \sqrt{2\pi(n-1)})$
5) ok _a 3	$k_{Tm} = (1.02 + e^{-(n+1)}) \cdot \sqrt{2\pi(n-1)}$	Optimization $k_a (k_{Tm} = k_a \cdot \sqrt{2\pi(n-1)})$
6) ik₄2 use	$k_{Tm} = (a_0 + a_1 e^{-n}) \cdot \sqrt{2\pi(n-1)}$	Interpolation k_a ($n = [2,6]$), $a \approx [1.016, 0.509]$
7) ik _a 4	$k_{Tm} = (a_0 + a_1 / n) \cdot \sqrt{2\pi(n-1)}$	Interpolation k_a ($n = [2,6]$), $a \approx [0.983, 0.203]$
8) ik _{Tm} 5	$k_{Tm} = a_0 + a_1 \sqrt{n-1}$	Interpolation k_{Tm} ($n = [2,6]$), $a \approx [0.307, 2.412]$
9) ak _{Tm} 5	$k_{Tm} = a_0 + a_1 \sqrt{n-1}$	Approximation k_{Tm} ($n = 2 \div 10$), $a \approx [0.249, 2.442]$

5. Simplified formulas

5.1. Time constant $T_m = k_{Tm}T$ (chosen)

Symbol	Formula	T _m / T _{msim}
sim (k _{asim})	$k_{Tm} = \frac{(n-1)!e^{n-1}}{(n-1)^{n-1}}$	1 sim use easy
easy (k _a =1)	$k_{Tm} = \sqrt{2\pi(n-1)}$	0.98
use (ik ₃ 2)	$k_{Tm} = (a_0 + a_1 e^{-n}) \cdot \sqrt{2\pi(n-1)}$	0.94
()	<i>a</i> ≈ [1.016, 0.509]	0.92 2 3 4 5 6 7 8 9 10

5.2a. Transport delay $T_0 = k_{T0}T$

Symbol	Formula	Methods of simplify
1) k_{0sim}	$k_{T0} = \frac{(n-1)^n - (n-1)!e^{n-1} + (n-1)!S_{n-1}}{(n-1)^{n-1}}$	Accurate formula, $S_{n-1} = \sum_{i=1}^{n} \frac{(n-1)^{i-1}}{(i-1)!}$
	(n-1)(n-k)	Maclaurin series: $S_{n-1} \approx e^{n-1} - k_n R_n$
	$k_{T0} = \frac{(n-1)(n-\kappa_n)}{n}$	Lagrange rest: $R_n = k_n \frac{(n-1)^n}{n!}$
2) ok _n 1	$k_n = 1.25(1 + e^{-n})\sqrt{n-1}$	Optimization k_n
3) ik _n 5	$k_n = a_0 + a_1 \sqrt{n-1}$	Interpolation k_n , $n = [2,6]$, $a \approx [0.474, 0.963]$
4) ik _n 6 use	$k_n = a_0 + a_1 \sqrt{n}$	Interpolation k_n , $n = [2,6]$, $a \approx [-0.189, 1.149]$
5) ak _n 5	$k_n = a_0 + a_1 \sqrt{n-1}$	Approximation k_n , $n = 2 \div 10$, $a \approx [0.345, 1.032]$
6) ak _n 6	$k_n = a_0 + a_1 \sqrt{n}$	Approximation k_n , $n = 2 \div 10$, $a \approx [-0.236, 1.172]$
7) ik _{T0} 8 easy	$k_{T0} = a_0 n + a_1 \sqrt{n}$	Interpolation k_{T0} , $n = [2,6]$, $a \approx [0.916, -1.096]$
8) ik _{T0} 89	$k_{T0} = a_0 (n-1) + a_1 \sqrt{n-1}$	Interpolation k_{T0} , $n = [2,6]$, $a \approx [0.789, -0.507]$
9) ak _{T0} 8	$k_{T0} = a_0 n + a_1 \sqrt{n}$	Approximation k_{T0} , $n = 2 \div 10$, $a \approx [0.968, -1.213]$

5.2a. Transport delay $T_0 = k_{T0} T$ (chosen)

Symbol	Formula	T _o / T _{osim}
sim (k _{0sim})	$k_{T0} = \frac{(n-1)^n - (n-1)!e^{n-1} + (n-1)!S_{n-1}}{(n-1)^{n-1}}$	1.05
easy (ik _{T0} 8)	$k_{T0} = a_0 n + a_1 \sqrt{n}, a \approx [0.916, -1.096]$	
use (ikn6)	$k_{T0} = \frac{(n-1)(n-k_n)}{n}, k_n = a_0 + a_1\sqrt{n}$	0.95
	<i>a</i> ≈ [-0.189, 1.149]	0.9 2 3 4 5 6 7 8 9 10

5.2b. Ratio *T*₀ / *T*_m

Symbol	Formula	Methods of simplify
1) kT _{0msim}		Accurate formulas
2) ikT _{0m} 1	$k_{T0m} = a_0 + a_1 n$	Interpolation k_{T0m} , $n = [2,6]$, $a \approx [-0.091, 0.097]$
3) ikT _{0m} 5	$k_{T0m} = a_0 + a_1\sqrt{n-1}$	Interpolation k_{T0m} , $n = [2,6]$, $a \approx [-0.212, 0.315]$
4) ikT _{0m} 6	$k_{T0m} = a_0 + a_1 \sqrt{n}$	Interpolation k_{T0m} , $n = [2,6]$, $a \approx -0.429$, 0.376]
5) aikT0m6	$k_{T0m} = a_0 + a_1 \sqrt{n}$	Approximation k_{T0m} , $n = 2 \div 10$, $a \approx [-0.447, 0.385]$
6)~ikT0m6 best	$k_{T0m} = a_0 + a_1 \sqrt{n}$	Interpolation k_{T0m} , $n = [2,6]$, $a \approx [-0.428, 0.377]$
6) ~akT0m6	$k_{T0m} = a_0 + a_1 \sqrt{n}$	Approximation k_{T0m} , $n = 2 \div 10$, $a \approx [-0.44, 0.38]$
	kT _{Om} = T _{Osim} / T _{msim}	$k_{TOM} = T_{Osim} / T_{msim}$ 1.15 1.1 1.05 1.05 1.05 1.05 1.05 1.05

5.2. Transport delay T₀ (chosen)

$T_0 = k_{T0} T \text{ or } T_0 = k_{T0m} T_m$

Symbol	Formula	T. /T.
sim (k _{0sim})	$k_{T0} = \frac{(n-1)^n - (n-1)!e^{n-1} + (n-1)!S_{n-1}}{(n-1)^{n-1}}$	1.1
easy (ik _{T0} 8)	$k_{T0} = a_0 n + a_1 \sqrt{n}, a \approx [0.916, -1.096]$	1.05 easy best
use (ikn6)	$k_{T0} = \frac{(n-1)(n-k_n)}{n}, k_n = a_0 + a_1\sqrt{n}$ $a \approx [-0.189, 1.149]$	0.95
best (ikTom6	$\binom{k_{T0m} = a_0 + a_1 \sqrt{n}, a \approx [-0.428, 0.377]}{\text{plus } T_m \text{ (use)}}$	0.9 2 3 4 5 6 7 8 9 10

5.3. Conversion $(T, n) \rightarrow (T_0, T_m)$

6.1. Control project (PID tunning)

of Science and Technology

6.1. Control project (PID tunning)

6.2. Control project (PID tunning)

Analytical conversion of the Strejc model to the first order with time delay (FOTD) model

Wrocław University of Science and Technology

6.2. Control project (PID tunning)

6.3. Identification of Strejc model

$$G_m(s) = \frac{k}{\left(Ts+1\right)^n}$$

Id1) Measurement of T_0 and T_m , and table

[п	2	3	4	5	6	7	8	9	10
	T_0 / T_m	0.104	0.218	0.319	0.410	0.493	0.570	0.642	0.709	0.773
[t_R / T	1	2	3	4	5	6	7	8	9
-[h_R	0.264	0.323	0.353	0.371	0.384	0.394	0.401	0.407	0.413

Id2) Measurement time t_R and slope R, and the Stirling formula: $n = 1 + \frac{2\pi R^2 t_R^2}{k^2}$ $T = \frac{t_R}{n-1}$

Id3) Measurement of T_0 and T_m , and simplified formulas

	$T_m = k_{Tm}T$	$T_0 = k_{T0m} T_m$	$\frac{T_0}{T} = c_0 + c_1 \sqrt{n}$	$\rightarrow n = \left(\frac{T_0 - c_0 T_m}{T_0 - c_0 T_m}\right)^2$
best	$k_{Tm} = (a_0 + a_1 e^{-n}) \cdot \sqrt{2\pi(n-1)}$	$k_{T0m} = c_0 + c_1 \sqrt{n} ,$		$\begin{pmatrix} c_1 T_m \end{pmatrix}$
	$a \approx [1.016, 0.509]$	$c \approx [-0.428, 0.377]$		Т
				$T = \frac{T_m}{\sqrt{2\pi(n-1)}}$

6.3. Identification of Strejc model

6.3. Identification of Strejc model

6.3. Identification of Strejc model

$$G_m(s) = \frac{k}{\left(Ts + 1\right)^n}$$

Id1) T_0 and T_m , and table

Id2) Time t_R and slope R, and the Stirling formula:

$$n = 1 + \frac{2\pi R^2 t_R^2}{k^2}$$
 $T = \frac{t_R}{n-1}$

Id3) T_0 and T_m , and the simplified formula:

$$n = \left(\frac{T_0 - c_0 T_m}{c_1 T_m}\right)^2 \qquad T = \frac{T_m}{\sqrt{2\pi(n-1)}}$$

Conclusion

We can perform analytical conversion of Strejc model to FOTD model

Set	$T_m = k_{Tm}T$	$T_0 = k_{T0}T \text{lub} \ T_0 = k_{T0m}T_m$	
sim	$k_{Tm} = \frac{(n-1)! e^{n-1}}{(n-1)^{n-1}}$	$k_{T0} = \frac{(n-1)^n - (n-1)!e^{n-1} + (n-1)!S_{n-1}}{(n-1)^{n-1}}, \ S_{n-1} = \sum_{i=1}^n \frac{(n-1)^{i-1}}{(i-1)!}$	accurate
easy	$k_{Tm} = \sqrt{2\pi(n-1)}$	$k_{T0} = a_0 n + a_1 \sqrt{n}$ $a \approx [0.916, -1.096]$	simplified
use	$k_{Tm} = (a_0 + a_1 e^{-n}) \cdot \sqrt{2\pi(n-1)}$ $a \approx [1.016, 0.509]$	$k_{T0} = \frac{(n-1)(n-k_n)}{n}, \ k_n = a_0 + a_1 \sqrt{n}$ $a \approx [-0.189, \ 1.149]$	simplified
best 	$k_{Tm} = (a_0 + a_1 e^{-n}) \cdot \sqrt{2\pi(n-1)}$ $a \approx [1.016, 0.509]$	$k_{T0m} = a_0 + a_1 \sqrt{n},$ $a \approx [-0.428, 0.377] (T, n) \Leftrightarrow (T_m T_0)$	simplified

The next problems to be developed are:

- conversion of any *n* order inertial model (no formula for inflection point)
- adaptation of choosen control design methods to different models

